
International Journal of Theoretical Physics, Vol. 34, No. 10, 1995 

v 

Polarization of Cerenkov Radiation in Anisotropic 
Media 
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Using the method of Stokes parameters, we examine the polarization of Cerenkov 
radiation in anisotropic media. The study reveals that the radiation is totally 
polarized and that circular polarization is purely a quantum effect. We examine 
two cases: when the particle initially moves along the optical axis and when the 
particle initially moves perpendicular to the optical axis. 

1. I N T R O D U C T I O N  

Despite extensive literature on the topic, the phenomenon of Cerenkov 
radiation remains a subject of interest. The fact that it has found application 
in technology has accentuated this interest. Although most of these studies 
are devoted to the case of isotropic media, interest has extended to other types 
of media. Studies devoted to anisotropic media (Ginsburg, 1940; Kukanov and 
Orisa, 1971) meet with greater problems because of the complicated nature 
of the radiation. An aspect of the phenomenon of particular interest is the 
polarization. Tamm and Frank (1937), who were the first to give a theoretical 
explanation of the phenomenon, showed that the radiation has a total linear 
polarization. However, Loskutov (1960), using the methods of quantum elec- 
trodynamics, showed that there is a circularly polarized component. For the 
degree of circular polarization he obtained the expression 

sn(o3h/cp)[ 1 - (cos O)/[3n] 
Pcir = sine0 + (n toh/2cp)2(1 - h -2) (1) 

where s = - 1 is the polarization of the electron. In the concluding section 
an explanation will be proferred for this seemingly insufficient picture given 
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by Tamm and Frank and even by the experiments of the discoverer Ceren- 
kov himself. 

No detailed study of the polarization in anisotropic media is available. 
Ginsburg (1940), using what he called the Hamiltonian method, studied the 
phenomenon in uniaxial crystals and remarked that there is a substantial 
difference in the pattern and polarization of the radiation compared with 
those of isotropic media. The nature of such differences, particularly in the 
polarization, was, however, not analyzed. 

In this paper, using the powerful tools of the Stokes parameters as a 
kind of Nicol prism, we carry out a more detailed analysis of the polarization 
of Cerenkov radiation in anisotropic media. In order to obtain a broader 
picture we shall use the methods of quantum electrodynamics. In the next 
section we briefly obtain an expression for the intensity of radiation since 
this is relevant for our analysis. Although the determination of the intensity 
has been done elsewhere, we need to write it in a form which will involve 
the parameters necessary to assist us with our analysis. In Section 3 the 
Stokes parameters are introduced and applied. Section 4 discusses the results. 
A clearer picture is obtained by giving definite values to the parameters of 
the problem. 

2. INTENSITY OF RADIATION 

If we consider the case of a medium which is both electroactive and 
magnetoactive, Maxwell's equations in a medium in terms of the vector 
potential (scalar gauge) can be shown to reduce to the following differen- 
tial equation: 

( 02 1 0 2  ) 
- l  - -  + ~ Av = 0 (2)  

In order to study quantum processes in a medium Ginsburg (1940) and 
Sokolov (1940) developed methods based on a phenomenological approach. 
Both of them used the methods so developed to study radiation processes in 
media. Alexeev and Nikitin (1965, 1966) generalized their methods to the 
case of anisotropic media. Following their footsteps, we express the solution 
of (2) in terms of plane waves in the form 

/4 2h\1/2 . . 
A = L-3n ~q,) (-'~-'~ - (ae-"~ + a+e i~~ ) (3) 

As a result of the quantization of the electromagnetic field, the amplitudes 
a and a + now acquire the dual properties of classical and quantum numbers. 
Their classical parts are three-component vectors defining the polarizations 
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of  the transverse and longitudinal photons.  Here  we shall be interested in the 
polarization of  the transverse photons only. On the other hand, in view of  
their quantum nature, they satisfy the commuta t ion  relation 

aa + - a + a =  1 (4) 

It has been shown that equation (2) has two solutions (eigenvectors)  
corresponding to two types of  waves.  In a magnetoact ive  med ium the two 
waves  are transverse.  Their  polarization is easily determined. In an electroac- 
tive medium,  however ,  one wave is transverse,  the other is not. We shall 
therefore be interested in this latter case. We therefore put ~z~ = tx3 = 1 and 

6c~t3 = 61 

0 63 

For a study of  the polarization of  the transverse photons, we write the 
ampli tude in the fo rm 

a = a f f +  aug  

where the vectors  af, ag are classical parts, a n d f a n d  g provide the quantum 
parts o f  a. 

Further, 

a f  = cOS o~ 132 + eiY sin a 133 (5) 

ag = sin a 132 - ei~' cos OL 133 (6) 

15z and 153 are unit vectors defined as 

K A k  ~ 
152 = [1 - (~.k~ ~/2; 133 = K ^ 132 

w h e r e  

K = (sin 0 cos q~, sin 0 sin q~, cos 0) (7) 

is the unit vector  in the direction of  the wave  vector  q and k ~ = (0, 0, 1) is 
directed along the optical axis. Note that 132, 133, K form an or thonormal  triad. 

Assuming that initially there are no photons in the field, in (4) we may  
take aa  § = 1, a+a = 0. Fol lowing f rom this we take 

i f §  = gg§ = 1, f + f  = g+g = 0 

In a medium,  the wave  vector  is related to the frequency by 

ca.) 
q = n --  K (8) 

c 
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where n is the refractive index, and in this case 

/ / 2  1 = E l 

/22_1 ~ E163  
61 sinZ0 + 63 cos20 

The corresponding eigenvectors are given by 

1+1 = (sin q~, - c o s  q~, 0) (9) 

!-1 = (63 cos 0 cos tp, 63 cos 0 sin ~, - 6 l  sin 0) 
(e12 sin20 + 632 cos20)1/2 (10) 

It is easy to verify that 

I+I-K = 0; I - l ' t r  # 0 

We write the operator of the energy of interaction in the form 

% = e(a-A) (11) 

where e is the charge on the particle and ot is 4 • 4 Dirac matrix. Following 
Sokolov (1958), using perturbation methods, we find the probability of 
transition 

toj = ~ ~ R f  Rigk,k,+q8 K'  + -- - (12) 
k' C 

where Rj = L--3/2(4"rrc2h/A/[)l/2Fj, with 

( Fj = 1 + SS 'KK~ , KK '} [_ \  SS'kkT-)  aa 

i (a'k')(a+'k) + (a.k)(a+.k')] 
+ -k-s ( s k ' k  - s 'kk ' )a  A a + + ss' kk'  

_ J  

In the above expression hk  = p,  c h K  and hk ' ,  chK '  are respectively the 
momentum and energy of the particle. The eigenvalues of the projection of 
the spin operator along the momentum are given by I 1 , s' -s -s (s, = +__ 1). 
Quantities without a prime refer to the initial state. Those with a prime refer 
to the final state. L is the dimension of an arbitrary elementary cube. We can 
now write down the intensity of radiation using (5), (6), and (12). We consider 
two cases. 

Case I. Particle initially moves along the optical axis. In this case k = 
k(0, 0, 1). The expression (12) is independent of tp. Integration with respect 
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tO q~ therefore leads to a factor 2~r only. Integration with respect to 0 is 
effected by using the properties of the ~-function of complex argument. 

The summation with respect to k' gives 

k' = k - q  

Integration using the properties of the ~-function gives 

K , = K - _  
c 

Solving these two equations gives 

n c o s 0  K +  to 
k 2kc (n2 1) 

= 13_ l + o h  (n 2 _ 1) (13) 
2cp 

Further, in going from summation to integration we used the result (Soko- 
lov, 1958) 

L -3 ~q ---> d3q 

The intensity of radiation then becomes 

WI I o~ do) / c ~  2 
= - -  2 / 4 S s  - 1 )  

C (1 + 4uerJ/2 sin e t J [  

SSr } + ~ -  [~e(n2 - 1)(1 - 2~)  + 2~2(1 - [32)] 

s;[( 
+ X 1 cpfV \ 

/ s in~ct \ f  2 : 
+ [ c o s 2 o ) l ~  (n - 

+ - -  _ COS 0 - -  ~ - 1  - -  
cp 7p-p 

ss' [ 
1) + sine0 + - - ~  ~ 2 ( n 2 -  1)(1 - 2~)  

+ 2 ~ 2 ( 1 - [ 3 - 2 ) +  ( 1 - c ~ ) S i n 2 0 ] }  (14) 
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where ~ = mhl2cp and 

\ cp / ~p~ J 

From (13) we find for 0 

2 [ ( 6 3  _ 61)]61 ] ( [ 3 - 1  _ Y ) r ~  - -  6311 -T- (1  + 4U~re) 1/2] 
c o s 2 0  ~-- (15) 

2[(63 - -  6 l ) / 6 l ] { 6 3  - -  [ (63 - -  61) /611( [3  - 1  - -  , ~ ) 2 }  

The sign is chosen to ensure that 

0 --< cos20 --< 1 

Case II. Particle initially moves perpendicular to the optical axis. In this 
case k = (kl, k2, 0). The expression (12) is now a function of 0 and tp. It is 
more convenient to perform the integration first with respect to q~. Again 
using the properties of the g-function of complex argument, we obtain 

= - -  A m  da~ sin 0 dO 
' r rc  

I  ss( X \s inect / (L1 + t - [~2(r/2 - 1) + sin2,] 

SSP } + 2 ~ -  ~2(1 - [3 -2) 

+ sin 2ct cos -/ S ~ p  1 - [3n 

s,( 
+ S I cp[3 ]\ - s i n 0 c o s , +  cp / 

+ _ s i n 2 u s i n  c o s 0 s i n 2 ,  1 + 1 -  

/ s i n Z a \ f l  - -A-SS'( c ~ ) ]  +/~o~o)~[1+ 1 -  L~i~n~-,~ + ~os20cos~,~ 

SSt } + 2 -~- ~,~c~2(1 - [3-2) (16) 
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where, instead of (13), we now get 

n sin 0 cos t~ = [3 -1 + to___h_h (n 2 _ 1) (17) 
2cp 

while t~ is connected with q~ by 

kl cos ~p + k 2 sin q~ = k cos t~, k = (k~ + k~) I/2 

A is a function of 0 and does not play any role in the construction of the 
Stokes parameters. Having integrated with respect to % the intensity of 
radiation and so the Stokes parameters become a function of 0. 

3. ANALYSIS OF T H E  P O L A R I Z A T I O N  

For the purpose of the analysis we now introduce the Stokes parameters, 
which we represent in the form of a four-vector: 

(18) 

The components of P are defined as follows 

P1 = + 1 implies plane (linear) polarization along the vector [32 (19) 

Pl = - 1  implies plane (linear) polarization along the vector [33 (20) 

P2 = + 1, plane polarization in a direction making and angle -rr/4 (21) 
with [32 and [33, respectively, to the right (22) 

P3 = + 1, right circular polarization (23) 

P3 = - 1, left circular polarization 

In (18) I is proportional to the intensity of radiation and is used in 
normalization so that I P I -< 1. 

The constants (x and ",/ in (14) and (16) enable us to identify the 
elements of the density matrix which are used in the construction of the 
Stokes parameters. For [32 and [33, see (5) and (6). We can now pick out the 
Stokes parameters, but first we average with respect to the final spin states, 
noting that }~  s I = 0. 
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C a s e  I. Particle moves along the optical axis. In this case the Stokes 
parameters are given by 

PI I = -sin20 (24) 
sin20 + ( o ~ h / 2 c p ) 2 ( n  2 - 1) 

P~ = 0 

p~ = s ( n ~ o h l c p ) [ 1  - (cos O)/[3n] 
s~neO - ~ ~--~h/-~cp--~n~ - 7 -~ (25) 

C a s e  II. Particle moves perpendicular to the optical axis. Here 

-sinS+ - c~ c~ (26) 
P{ = 1 - sine0 COS2O + ( t o h / 2 c p ) e ( n  2 - 1) 

p~_ = 2 cos 0 sin O cos qJ (27) 
1 - sine0 cos20 + ( t o h / 2 c p ) Z ( n  2 - 1) 

s ( n o ~ h / c p ) [ 1  - (sin 0 cos ~) / f Sn]  (28) 
P~- = 1 - sine0 cosZtb + ( o ~ h / 2 c p ) e ( n  2 - 1) 

Expressions (24)-(28) give us the degree of  polarization of each compo- 
nent. In addition, if 

[P[ = (P~ + P~ + p32) 1/2 = l 

we say that the radiation is totally polarized. If, however, 

ip 1 = (p2 + g~ + g~)~,2 < 1 

we say that the radiation is partially polarized. This information is not easy 
to deduce in their present form. To obtain such information, we consider 
specific cases, giving definite values to the constants. In case I, 0 defines 
the angle between the direction of motion of  the particle and the wave vector. 
This is not so in case II, where the angle between the direction of motion 
and the wave vector is defined by sin 0 cos ~; taking 00 to represent this 
angle, we have from (17) 

sin 0 cos ~ = cos 00 = 1 + noah  (1 - / , / - 2 )  (29) 
f3n 2 c p  

In terms of 0o, (26)-(28) take the form 

1 - (2 cosec20 - 1) cos20o 
P~ sin20o + ( o ~ h / 2 c p ) 2 ( n  2 - 1) 

(30) 

p~_ = 2 cosec20 COS200 (sin20 - cos200) 1/2 (31) 

sin200 + ( t o h / 2 c p ) 2 ( n  2 - 1) 
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s(no~hlcp)[1 - (cos 00)/[3n] 
P3 = sin20o + (o~hl2cp)2(n z - 1) (32) 

The forms these expressions now take can be compared  with (24) and (25), 
particularly (25). Further, (25) and (32) should be compared  with (1). The 
role of  the spin also needs to be noted. 

The values which 0 may  take are, however ,  restricted on one hand by 
the conditions imposed by the ~-function [see (17)] and, as can be seen, f rom 
(31), which stipulates 

sin 0 -> cos O0 (33) 

In previous work on the energy loss it was  shown that radiation occurs under 
certain conditions which ensure that the energy is a real quantity. One of  
those conditions is that 

t2 = n acos20 _> b 2 

){[ 2 2.,,2 } 
\ -U~ 1 + (e3f2e, - r ~ U ~ ) 2 J  - 1 

where 

(34) 

It is interesting to note that these two condit ions (33) and (34) reduce to the 
same inequality, namely  

sin20 --> sin2~ for some 0 = 

where 

sin28 = ele 2 + 2E3(E 3 -- et)(1/[3 -- o~h/2cp)ro +- e~e3(1 + 4UEr~) 1/2 (35) 
2[(63 -- el)2(1/[3 -- toh/2cp) 2 + I E l e 3 ( ~ ! 3  - -  el) ] 

1 o h  ~3 - ~t o~h 
r, = - + (~3 - 1), U~ - 

[3 2cp el 2cp 

1 o~h 
ro  : + - 1 )  

This expression asserts that the two cones  (when the particle moves  parallel 
and perpendicular, respectively, to the optical  axis) have  no points of  intersec- 
tion. Thus in case II, 

g -< 0 -< ~r/2 

and g thus determines the threshold of  radiation. This implies that unlike 
case I, where 0 takes a definite value, here O is smeared  out over  a small  
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interval. The polarization will therefore vary with 0 in this small interval and 
the whole radiation so to speak forms a halo about the axis of the cone (the 
axis along which the particle moves). 

4. DISCUSSION AND CONCLUSION 

The essential difference between the two cases is that when the particle 
moves along the optical axis, the quanta are emitted at a fixed angle to 
the optical axis, forming a hollow cone, whereas when the particle moves 
perpendicular to the optical axis, the radiation is smeared out within a small 
band forming a halo about the axis of the cone. The former resembles the 
case of an isotropic medium. In this case the polarization vector is constant. 
In the latter case the direction of the vector is fixed, but the magnitude varies 
with the angle in the interval in which the radiation occurs. 

A clearer picture is obtained if we take some definite values. We consider 
a medium in which e3 = 3, ~l = 2, [3 = 0.8, and r = 0.1. This gives 
for the first case 

so that 

cos 0 = 0.824 

PI I = 0.954 

P~ = 0 

P~ = 0.14 

(pll)2 + (p~)2 + (p~)2 = 1 

The sign in (24) means the vector of  linear polarization is along 133. Thus 
the radiation is totally polarized. 

The sign of the circular polarization is completely determined by the 
spin (S = +1). 

In the second case, when the particle moves perpendicular to the opti- 
cal axis, 

0.8 - sin20 <- 1 

The angle of the cone is about 7 ~ and 36 ~ --< 00 -< 43018 '. The radiation is 
confined within this interval. The change of polarization with the angle is 
also limited to this region. The change of the components of the degree of 
polarization is exhibited in Fig. 1. P~- is of small magnitude and varies slowly. 
P~- is along the vector 132 and P~ to the right of this. Making allowance for 
the approximations used in the computations, we find again that generally 
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Fig. 1. Degree of polarization. Pi, linear polarization; P2 linear polarization 1v/4 to P[; P3 

circular polarization. 

[(p{)2 + (p~_)2 + (p~)2]~/2 = 1 

So here also radiation is totally polarized. As has been remarked, in both 
cases, circular polarization is purely a quantum effect and its sign depends 
on the polarization of the particle. McMaster (1954) remarked that in optics 
a Nicot prism is not sensitive to circular polarization and that circular polariza- 
tion must first be transformed into plane polarization by means of a quarter- 
wave plate before measurement can be made. We may therefore infer from 
this study that theoretically, the method of quantum electrodynamics provides 
the quarter-wave plate which enables us to detect circular polarization. The 
formulas (25) and (32) definitely show that when h ---> 0, these components 
also vanish. Their comparatively small value, as seen from the calculated 
values, is also to be noted. 
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